
(3.5) was solved by successive approximations here. The results of the numerical computa- 
tions are presented in Figs. 3 and 4. The distribution of the function w along the line 
y = x (x ~ 0) is represented in Fig. 3, and along the lines y = I and y = I/2 (x ~ 0) in 
Fig. 4. 
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BIPERIODIC SYSTEM OF RECTILINEAR LONGITUDINAL-SHEAR CRACKS 

IN AN ELASTIC BODY 

V. G. Novikov and B. M. Tulinov UDC 539.375 

Problems of the theory of elasticity for an infinite isotropic body weakened by a bi- 
periodic system of rectilinear cracks were examined in [I-11], where they were reduced to a 
numerical solution of a singular integral equation or an infinite algebraic system. In this 
article we construct an analytic solution to a problem for a biperiodic system of rectilinear 
longitudinal-shear cracks forming a rhombic network. An expression is obtained for the macro- 
scopic shear modulus of a medium with such a system of cracks. 

I. Formulation and Solution of the Biperiodic Problem. It is known [12] that the solu- 
tions of problems of longitudinal shear reduce to determination of the function F(z) analytic 
in the region occupied by the body, where z = x + iy. Here, the stress components Oxz and 
Oyz and the displacement w are determined from the formulas 

%z - -  ~%~ = poF(z), w = ne / ( z ) ,  F(z) =/ ' (z) ,  ( 1.1 ) 

where ~0 is the shear modulus. 

Let an infinite elastic plane xOy be weakened by a biperiodic system of rectilinear slits 
parallel to the real axis. It is assumed that the fundamental parallelogram of periods has 
the form of a rhombus. A slit is located inside the parallelogram across the diagonal (Fig. 
I). On the edges of the slits we specify a self-balanced load which is equal at congruent 
points 

ayz T --r(x), Ixl < L  y = 0 .  ( 1 . 2 )  

We use 2g(x) to designate the discontinuity of the displacement in the transition across 
the slit 

2g(~) = ~(~, + o  ) - w ( ~ ,  - o ) ,  IXl ~ l. 

Let the applied load T(x) be an even function of the coordinate x. Then T(x) = T(--x) 
and, by virtue of the symmetry of the problem, the function F(z) is an even biperiodic func- 
tion. It can be shown [13, 14] that F(z) is expressed through the derivative of the function 
g(x) in the form 

l i ~g'(t)P'(t)dt ( 1 . 3 )  
(z) = ~ ~(t) - P (3' 

0 

where P(z) is an elliptic Weierstrass function. The primes denote differentiation with re- 
spect to the argument. 
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We obtain the following equation for the function g'(t) from boundary condition (1.2) 

l 

t ~ g'(t) P'(t)d} T ( z )  
(1.4) .J p(t)-P(x)" 7- Fo" o 

Expressing P(t) under the integral sign in Eq. (1.4) through a new variable, we reduce 
Eq. (1.4) to a problem of inversion of a Cauchy integral, the solution of which is well known 
[14]. Omitting the intermediate calculations, we obtain the solution of Eq. (1.4): 

i ~. ]/P (=) -'p (zi p'(x)r(=)~= , (I .5) 
g' (t) -- ]/P (t) ---P (0' +, (0 -~ [~---~ it i p (~) 7tH~ 0 

where  C0 i s  a c o n s t a n t .  From ( 1 . 1 ) ,  ( 1 . 3 ) ,  and ( 1 . 5 )  we o b t a i n  t h e  s t r e s s  d i s t r i b u t i o n  i n  
t h e  f o r m  

i " r ]co+,P(z) ]/P(t)--P(O P'(t) 
%, i % , -  ~ ] / P ( = ) - P ( z )  _ o 

P (t) -- P (z)" ~ T(t) dt . ( 1 . 6 )  

Le t  us  e x a m i n e  t h e  c a s e  o f  t h e  a p p l i c a t i o n  o f  a u n i f o r m  l o a d  T(x)  = t o .  Then i t  f o l l o w s  
f r o m  ( 1 . 6 )  t h a t  

C 
%, - i%, = % + ]/p (O - P (0' ( I. 7) 

where C is a constant (different from C0), the value of which is determined from the condi- 
tion of double periodicity of the displacement w(x, y). It can be shown that w(x, y) is a 
periodic function of the coordinate x, while an expression for C follows from the condition 
of periodicity of the displacement with respect to the coordinate y 

C = - - t ~ [ P ( O  - -  .e, l]/'~-'-~----~_12K(k), ( 1 . 8 )  

where K(k) is a complete elliptic integral of the first kind [15]; 

A = e~ + S%P (t) + ~,%, 

- A'+ VA ~ + [p (z) - ~,1, (,, - ~); 
X+ = [ P  (l) -- e~] 2 ' 

k , = /  ~'- ~_ -- ~+" 

(I .9) 

We have the following expression for the stress intensity factor [11] from Eqs. (1.7)- 
(1.9) in the case of a uniform load 

, t/- K P (l) --  % ~+ -- A_l ' 
K0 = a  K(k) GT> ~(0 

where  K0 = z0 ~/~. The d e p e n d e n c e  o f  K/K0 on d i m e n s i o n l e s s  c r a c k  l e n g t h  7~/~ i s  shown in  F i g .  2 .  
C u r v e s  1-5 c o r r e s p o n d  t o  t h e  v a l u e s  d / a  = oo (a p e r i o d i c  s y s t e m  o f  c o l i n e a r  c r a c k s ) ,  4 ,  2 ,  1, 
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and I/2. At large values of d/a (curves ]-3), the stress intensity factor monotonically 
increases with an increase in crack length. When the value of d/a is on the order of unity 
(curve 4), the relation acquires a nonmonotonic character. The latter is expressed the more 
clearly, the lower the value of d/a (curve 5). The stage of increase in the stress intensity 
factor is followed by the beginning of its decrease with an increase in crack length. Only 
when the cracks are close enough together does the stress intensity factor begin to increase 
again. This result agrees with the findings in [I, 4] regarding the possible effect of strain 
strain-hardening with the growth of a system of cracks. 

2. Macroscopic Parameters of a Network of Cracks. We will determine the relation be- 
tween the mean strains <Cyz> and mean stresses <Oyz > in a medium containing the above-de- 
scribed system of cracks, the edges of which are free of loads. 

Let 

where Y0 is constant. 

<eyr> = ?o, ( 2 . 1 )  

In  t h e  a b s e n c e  of  c r a c k s ,  such  d e f o r m a t i o n  would c r e a t e  the  s t r e s s  
Oy z = I0 in the medium, where 

Xo = P~?o" ( 2 . 2 )  

<Oyz> = ~<eyz>, 

For a medium with cracks we have 

(2.3) 

It follows from (2.1)-(2.3) where ~ is the macroscopic shear modulus of the cracked medium. 
that 

P,/~o = <oyz>/To' (2.4) 

C a l c u l a t i n g  <Oyz>, we f i n d  the  v a l u e  of  ~ f rom Eq. ( 2 . 4 ) .  

For  the  mean s t r e s s  <Oyz> we have  

S 

where S is the fundamental parallelogram of periods; r y) is the microscopic stress dis- 
tribution obtained from the solution of the biperiodic problem: 

%~(~, ,j) = Xo + ~(z, u). ( 2 . 6 )  

Then f o r  T ( x ,  y) we o b t a i n  b o u n d a r y - v a l u e  p r o b l e m  (1 . 1 ) - ( 1 . 2 )  w i t h  T(x)  = z0 ,  t h e  s o l u -  
t i o n  of  which i s  g i v e n  by Eqs .  ( 1 . 7 ) - ( 1 . 9 ) .  I n s e r t i n g  the  v a l u e  of  ~ ( x ,  y)  f rom ( 1 . 7 )  i n t o  
Eqs .  ( 2 . 4 ) - ( 2 . 6 ) ,  we f i n d  the  m a c r o s c o p i c  s h e a r  modulus  ~.  O m i t t i n g  t h e  i n t e r m e d i a t e  c a l c u l a -  
t i o n s ,  we obtain the final result for the case a = d: 

I 

_ .  i [K 4 ( i iV2)  + a4p "" (/)]x/4 ~ t /( t)  dr. ( 2. 7) 
~t o K(k~) .~o ] / ( t - - t 2 ) [ a 4 P 2 ( l ) - t - K 4 ( t / ' l / 2 ) t 4 ] '  

where 

/F (% t/~/2) ,  t 2 < P (/)/Ira e 1, 
t (t) = L2K ( t /V~)  - F (~, t / ~ ) ,  t 2 > ,  (0/Ira ~1, 

2t~ (t/3/~) a Y>-TB 
sin (qD)= j ,  (z) + K" ( i / V D  t 2' 

~ [ K2(I/V2) ] 
k~ = 7 t + l f K ' , ( l / y ~ )  + a'~ 2 (~) ' 

F(q),k) is an incomplete elliptic integral of the first kind [15]. 
follow from (2.7) for 1 <<a 

tt/p0 ~-- t -- nl2/2a 2 

while for 1 + a 
~t/~ "" --el~In (1 -- t'/a~), 

Asymptotic expressions 

(2.8) 

where CI = 0.7854. 
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The approach proposed in [16, 17], based on an approximate accountlng ot crack inter- 
action, gives the following value for the macroscopic shearmodulus in the case of a rhombic 
network of cracks with d = a 

' ~ / ~ o  = exp ('~12/2~). (2.9) 

Relations (2.7), (2.9), and (2.8) are shown in Fig. 3 by curves I-3~ respectively. All 
of the curves exhibit the same asymptotic behavior, given by Eq. (2.8), at l ~a. Equation 
(2.8) approximates Eq. (2.7) only for moderate values of 12/a 2 . For example, with li/a 2 = 
0.4, the difference between approximate equation (2.8) and exact equation (2.7) is about 30%. 
Equation (2.9) gives a value of ~/~0 differing from (2.7) by less than 6% up to 12/a 2 = 0.9. 
Thus, the approximate approach in [|6, 17] can be used with a high degree of accuracy up to 
the moment of complete fracture. 
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